1	(i)	$\frac{d y}{d x} = \frac{d y/dt}{d x/dt} = \frac{4}{4t} = \frac{1}{t}$ But gradient of tangent = tan θ *	M1 A1 A1	their $dy/dt / dx/dt$ accept $4/4t$ here ag -need reference to gradient is tan θ
		$\Rightarrow \tan \theta = 1/t$	[3]	

Question		n	answer	Marks	Guidance
1	(ii)		Gradient of OP = $\frac{4t}{2t} = \frac{2t}{2t}$	M1	correct method for subtracting co-ordinates
			$2t^2 - 2t^2 - 1$	A1	correct (does not need to be cancelled)
			2^{-1}	M1	eithe substituting $t=1/\tan\theta$ in above expression
			$=\frac{2}{\tan\theta}$		or
					substituting $\tan\theta = 1/t$ in double angle formula for $\tan 2\theta$.
			$\tan^2 \theta$		$(\tan 2\theta = 2\tan \theta / (1 - \tan^2 \theta) = 2/t / (1 - 1/t^2) = 2t / (t^2 - 1)$
			$=\frac{2\tan\theta}{2}=\tan 2\theta$	A1	showing expressions are equal
			$1-\tan^2\theta$		
			$\Rightarrow \tan \phi = \tan 2\theta$		
			$\Rightarrow \phi = 2\theta_{*}$	A1	ag
			\Rightarrow Angle QPR = 180 - 2 θ	M1	supplementary angles oe
			$\Rightarrow \angle \text{TPQ} + 180 - 2\theta + \theta = 180$	M1	angles on a straight line oe
			$\Rightarrow \angle \text{TPQ} = \theta *$	A1	ag
				101	
				[6]	
1	(iii)		t = y/4		
			$\Rightarrow x = 2 y^2 / 16 = y^2 / 8$	M1	e minating t from parametric equation
			\Rightarrow $y^2 = 8x^*$	A1	ag
			When $t = \sqrt{2}, x = 2 \times (\sqrt{2})^2 = 4$	B1	
			$S_{0} V = \int_{-\infty}^{4} \frac{1}{2} dx = \int_{-\infty}^{4} \frac{1}{2} \frac{1}{2}$	M1	for M1 allow no limits or their limits
			$SO V = \int_0^\infty hy dx = \int_0^\infty ohx dx$	A1	need correct limits but they may appear later
			$= \left[4\pi r^2 \right]^4$	B1	fo $4\pi x^2$ (ignore incorrect or missing limits)
			$= 64\pi$	A1	in terms of π only
				[7]	allow SC B1 for omission of π throughout integral but otherwise
					correct

$2 V = \int_{1}^{2} \pi x^2 dy$		
$y = 1 + x^2 \Longrightarrow x^2 = y - 1$	B1	
$\Rightarrow V = \int_{1}^{2} \pi(y-1) dy$	M1	
$=\pi\left[\frac{1}{2}y^2-y\right]_1^2$	B1	$\left[\frac{1}{2}y^2 - y\right]$
$= \pi(2 - 2 - \frac{1}{2} + 1)$ = $\frac{1}{2}\pi$	M1 A1 [5]	substituting limits into integrand

3	(i)	$u = 10, x = 5 \ln 10 = 11.5$	M1	Using $u = 10$ to find OA
		so $OA = 5\ln 10$	A1	accept 11.5 or better
		when $u = 1$,	M1	Using $u = 1$ to find OB or $u = 10$ to find AC
		y = 1 + 1 = 2 so $OB = 2$	A1	
		When $u = 10$, $y = 10 + 1/10 = 10.1$		
		So AC = 10.1	A1	
				In the case where values are given in coordinates instead of $OA=,OB=,AC=$, then give A0 on the first occasion this happens but allow subsequent As.
				then allow A1.
			[5]	

Question		Answer	Marks	Guidance
3 (ii)		$\frac{\mathrm{d}y}{\mathrm{d}y} = \frac{\mathrm{d}y/\mathrm{d}u}{\mathrm{d}y} = \frac{1-1/u^2}{\mathrm{d}y^2}$	M1	their dy/du /dx/du
		dx dx/du 5/u	Al	
		$\left[=\frac{u^2-1}{5u}\right]$		Award A1 if any correct form is seen at any stage including unsimplified (can isw)
		EITHER		
		When $u = 10$, $dy/dx = 99/50 = 1.98$	M1	substituting u =10 in their expression
		$\tan (90 - \theta) = 1.98 \Rightarrow \theta = 90 - 63.2$	M1	or by geometry, say using a triangle and the gradient of the line
		= 26.8°	A2	26.8°, or 0.468 radians (or better) cao
				SC M1M0A1A0 for 63.2° (or better) or 1.103 radians(or better)
		OR		
		When $u = 10$, $dy/dx = 99/50 = 1.98$	M1	
		$\tan(90-\theta) = 99/50 \Longrightarrow \tan\theta = 50/99$	M1	allow use of their expression for M marks
		$\theta = 26.8^{\circ}$	A2	26.8°, or 0.468 radians (or better) cao
			[6]	
3 (iii)		$x = 5 \ln u \Longrightarrow x/5 = \ln u$, $u = e^{x/5}$	M1	Need some working
		$\Rightarrow y = u + 1/u = e^{x/5} + e^{-x/5}$	A1	Need some working as AG
			[2]	

Question		Answer	Marks	Guidance
3	(iv)	Vol of rev = $\int_0^{5\ln 10} \pi y^2 dx = \int_0^{5\ln 10} \pi (e^{x/5} + e^{-x/5})^2 dx$	M1	need $\pi (e^{x/5} + e^{-x/5})^2$ and dx soi. Condone wrong limits or omission of limits for M1.
		$=\int_0^{5\ln 10} \pi (e^{2x/5} + 2 + e^{-2x/5}) dx$	A1	including correct limits at some stage (condone 11.5 for this mark)
		$=\pi \left[\left(\frac{5}{2} e^{2x/5} + 2x - \frac{5}{2} e^{-2x/5}\right) \right]_{0}^{5\ln 10}$	B1	$\left[\frac{5}{2}e^{2x/5}+2x-\frac{5}{2}e^{-2x/5}\right]$ allow if no π and/or no limits or incorrect limits
		$=\pi(250+10\ln 10-0.025-0)$	M1	substituting both limits (their OA and 0) in an expression of correct form ie $ae^{2x/5} + be^{-2x/5} + cx$, $a,b,c \neq 0$
				and subtracting in correct order (- 0 is sufficient for lower limit) Condone absence of π for M1
		= 858	A1	accept 273π and answers rounding to 273π or 858
			[5]	NB The integral can be evaluated using a change of variable to u. This involves changing dx to $(dx/du)x du$. For completely correct work from this method award full marks. Partially correct solutions must include the change in dx . If in doubt consult your TL.
				Remember to indicate second box has been seen even if it has not been used.

		-
4(i) When $x = 0.5$, $y = 1.1180$ $\Rightarrow A \approx 0.25/2\{1+1.4142+2(1.0308+1.1180+1.25)\}$ $= 0.25 \times 4.6059 = 1.151475$ $= 1.151 (3 \text{ d.p.})^*$	B1 M1 E1 [3]	4dp (0.125 x 9.2118) need evidence
 (ii) Explain that the area is an over-estimate. or The curve is below the trapezia, so the area is an over- estimate. This becomes less with more strips. or Greater number of strips improves accuracy so becomes less 	B1 B1 [2]	or use a diagram to show why
(iii) $V = \int_0^1 \pi y^2 dx$ $= \int_0^1 \pi (1 + x^2) dx$ $= \pi [(x + x^3 / 3)]_0^1$ $= 1\frac{1}{3}\pi$	M1 B1 A1 [3]	allow limits later $x + x^3/3$ exact

	Question		Answer	Marks	Guidance
5	(a)		$V = \int_0^2 \pi y^2 dx = \int_0^2 \pi (1 + e^{2x}) dx$	M1	$\int_{0}^{2} \pi (1 + e^{2x}) dx$ limits must appear but may be later condone omission of dx if intention clear
			$=\pi\left[x+\frac{1}{2}e^{2x}\right]_{0}^{2}$	B1	$\left[x + \frac{1}{2}e^{2x}\right]$ independent of π and limits
			$= \pi (2 + \frac{1}{2} e^4 - \frac{1}{2})$	DM1	dependent on first M1.Need both limits substituted in their integral of the form $ax + b e^{2x}$, where <i>a</i> , <i>b</i> non-zero constants. Accept answers including e ⁰ for M1. Condone absence of π for M1 at this stage
			$= \frac{1}{2} \pi (3 + e^4)$	A1 [4]	cao exact only
5	(b)	(i)	x = 0, y = 1.4142; x = 2, y = 7.4564	B1	1.414, 7.456 or better
			$A = 0.5/2\{(1.4142 + 7.4564) + 2(1.9283 + 2.8964 + 4.5919)\}$	M1	correct formula seen (can be implied by correct intermediate step eg 27.7038/4)
			= 6.926	A1 [3]	6.926 or 6.93 (do not allow more dp)
5	(b)	(ii)	8 strips: 6.823, 16 strips: 6.797		
			Trapezium rule overestimates this area, but the overestimate gets less as the no of strips increases.	B1 [1]	oe

$6(i) \frac{dy}{dx} = 2\cos 2\theta - 2\sin \theta, \frac{dx}{d\theta} = 2\cos \theta$ $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$ $\frac{dy}{dx} = \frac{2\cos 2\theta - 2\sin \theta}{2\cos \theta} = \frac{\cos 2\theta - \sin \theta}{\cos \theta}$	B1, B1 M1 A1 [4]	substituting for theirs oe
(ii) When $\theta = \pi/6$, $\frac{dy}{dx} = \frac{\cos \pi/3 - \sin \pi/6}{\cos \pi/6}$ = $\frac{1/2 - 1/2}{\sqrt{3}/2} = 0$ Coords of B: $x = 2 + 2\sin(\pi/6) = 3$ $y = 2\cos(\pi/6) + \sin(\pi/3) = 3\sqrt{3}/2$ BC = $2 \times 3\sqrt{3}/2 = 3\sqrt{3}$	E1 M1 A1,A1 B1ft [5]	for either exact
(iii) (A) $y = 2\cos\theta + \sin 2\theta$ $= 2\cos\theta + 2\sin\theta\cos\theta$ $= 2\cos\theta(1 + \sin\theta)$ $= x\cos\theta^*$ (B) si $\theta = \frac{1}{2}(x-2)$ $\cos^2\theta = 1 - \sin^2\theta$ $= 1 - \frac{1}{4}(x-2)^2$ $= 1 - \frac{1}{4}x^2 + x - 1$ $= (x - \frac{1}{4}x^2)^*$ (C) artesian equation is $y^2 = x^2\cos^2\theta$ $= x^2(x - \frac{1}{4}x^2)$ $= x^3 - \frac{1}{4}x^{4*}$	M1 E1 B1 M1 E1 M1 E1 [7]	$\sin 2\theta = 2 \sin \theta \cos \theta$ squaring and substituting for <i>x</i>
(iv) $V = \int_0^4 \pi y^2 dx$ $= \pi \int_0^4 (x^3 - \frac{1}{4}x^4) dx$ $= \pi \left[\frac{1}{4}x^4 - \frac{1}{20}x^5 \right]_0^4$ $= \pi (64 - 51.2)$ $= 12.8\pi = 40.2 \text{ (m}^3)$	M1 B1 A1 [3]	need limits $\left[\frac{1}{4}x^4 - \frac{1}{20}x^5\right]$ 12.8 π or 40 or better.