| $\mathbf{1}$ | (i) | $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y / \mathrm{d} t}{\mathrm{~d} x / \mathrm{d} t}=\frac{4}{4 t}=\frac{1}{t}$
 But gradient of tangent $=\tan \theta^{*}$
 $\Rightarrow \tan \theta=1 / t$ | M1
 A1 | their $\mathrm{d} y / \mathrm{d} t / \mathrm{d} x / \mathrm{d} t$
 accept $4 / 4 t$ here
 Ag |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Aneed reference to gradient is $\tan \theta$ | | | | |
| [3] | | | | |

	uesti	answer	Marks	Guidance
1	(ii)	$\begin{aligned} & \text { Gradient of } \mathrm{QP}=\frac{4 t}{2 t^{2}-2}=\frac{2 t}{t^{2}-1} \\ &=\frac{2 \frac{1}{\tan \theta}}{\frac{1}{\tan ^{2} \theta}-1} \\ &=\frac{2 \tan \theta}{1-\tan ^{2} \theta}=\tan 2 \theta \\ & \Rightarrow \tan \phi=\tan 2 \theta \end{aligned} \begin{aligned} & \Rightarrow \phi=2 \theta * \\ & \Rightarrow \mathrm{Angle} \mathrm{QPR}=180-2 \theta \\ & \Rightarrow \angle \mathrm{TPQ}+180-2 \theta+\theta=180 \\ & \Rightarrow \angle \mathrm{TPQ}=\theta * \end{aligned}$	M1 A1 M1 A1 A1 M1 M1 A1 [8]	correct method for subtracting co-ordinates correct (does not need to be cancelled) eithe substituting $t=1 / \tan \theta$ in above expression or substituting $\tan \theta=1 / t$ in double angle formula for $\tan 2 \theta$. $\left(\tan 2 \theta=2 \tan \theta /\left(1-\tan ^{2} \theta\right)=2 / t /\left(1-1 / t^{2}\right)=2 t /\left(t^{2}-1\right)\right.$ showing expressions are equal ag supplementary angles oe angles on a straight line oe ag
1	(iii)	$\begin{aligned} & t=y / 4 \\ & \Rightarrow \quad x=2 y^{2} / 16=y^{2} / 8 \\ & \Rightarrow \quad y^{2}=8 x^{*} \\ & \text { When } t=\sqrt{ } 2, x=2 \times(\sqrt{ } 2)^{2}=4 \\ & \text { So } V=\int_{0}^{4} \pi y^{2} \mathrm{~d} x=\int_{0}^{4} 8 \pi x \mathrm{~d} x \\ & \quad=\left[4 \pi x^{2}\right]_{0}^{4} \\ & \quad=64 \pi \end{aligned}$	M1 A1 B1 M1 A1 B1 A1 [7]	e minating t from parametric equation ag for M1 allow no limits or their limits need correct limits but they may appear later fo $4 \pi x^{2}$ (ignore incorrect or missing limits) in terms of π only allow SC B1 for omission of π throughout integral but otherwise correct

$$
2 \begin{aligned}
V & =\int_{1}^{2} \pi x^{2} d y \\
y & =1+x^{2} \Rightarrow x^{2}=y-1 \\
\Rightarrow V & =\int_{1}^{2} \pi(y-1) d y \\
& =\pi\left[\frac{1}{2} y^{2}-y\right]_{1}^{2} \\
& =\pi(2-2-1 / 2+1) \\
& =1 / 2 \pi
\end{aligned}
$$

3 (i)	$\begin{aligned} & u=10, x=5 \ln 10=11.5 \\ & \text { so } \mathrm{OA}=5 \ln 10 \\ & \text { when } u=1 \text {, } \\ & y=1+1=2 \text { so } \mathrm{OB}=2 \end{aligned}$ When $u=10, y=10+1 / 10=10.1$ So AC $=10.1$	M1 A1 M1 A1 A1	Using $u=10$ to find OA accept 11.5 or better Using $u=1$ to find OB or $u=10$ to find AC In the case where values are given in coordinates instead of $\mathrm{OA}=, \mathrm{OB}=, \mathrm{AC}=$, then give A 0 on the first occasion this happens but allow subsequent As. Where coordinates are followed by length eg $B(0,2)$, length $=2$ then allow A1.

Question		Answer	Marks	Guidance
3	(ii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y / \mathrm{d} u}{\mathrm{~d} x / d u}=\frac{1-1 / u^{2}}{5 / u} \\ & {\left[=\frac{u^{2}-1}{5 u}\right]} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	their dy/du /dx/du Award A1 if any correct form is seen at any stage including unsimplified (can isw)
		EITHER When $u=10$, $\mathrm{d} y / \mathrm{d} x=99 / 50=1.98$ $\begin{aligned} \tan (90-\theta)=1.98 \Rightarrow \theta & =90-63.2 \\ & =26.8^{\circ} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A2 } \end{aligned}$	substituting $\mathbf{u}=10$ in their expression or by geometry, say using a triangle and the gradient of the line 26.8°, or 0.468 radians (or better) cao SC M1M0A1A0 for 63.2° (or better) or 1.103 radians(or better)
		OR When $u=10, \mathrm{dy} / \mathrm{dx}=99 / 50=1.98$ $\begin{array}{r} \tan (90-\theta)=99 / 50 \Rightarrow \tan \theta=50 / 99 \\ \theta=26.8^{\circ} \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A2 } \\ & \text { [6] } \end{aligned}$	allow use of their expression for M marks 26.8°, or 0.468 radians (or better) cao
3	(iii)	$\begin{aligned} & x=5 \ln u \Rightarrow x / 5=\ln u, u=\mathrm{e}^{x / 5} \\ & \Rightarrow \quad y=u+1 / u=\mathrm{e}^{x / 5}+\mathrm{e}^{-x / 5} \end{aligned}$	M1 A1 [2]	Need some working Need some working as AG

	Questi	Answer	Marks	Guidance
3	(iv)	Vol of rev $=\int_{0}^{5 \ln 10} \pi y^{2} \mathrm{~d} x=\int_{0}^{5 \ln 10} \pi\left(e^{x / 5}+e^{-x / 5}\right)^{2} \mathrm{~d} x$	M1	need $\pi\left(e^{x / 5}+e^{-x / 5}\right)^{2}$ and $d x$ soi. Condone wrong limits or omission of limits for M1. Allow M1 if y prematurely squared as eg $\left(e^{2 \times / 5}+e^{-2 x / 5}\right)$
		$=\int_{0}^{5 \ln 10} \pi\left(\mathrm{e}^{2 x / 5}+2+\mathrm{e}^{-2 x / 5}\right) \mathrm{d} x$	A1	including correct limits at some stage (condone 11.5 for this mark)
		$\begin{aligned} & =\pi\left[\left(\frac{5}{2} \mathrm{e}^{2 \times / 5}+2 x-\frac{5}{2} \mathrm{e}^{-2 \times / 5}\right)\right]_{0}^{5 \ln 10} \\ & =\pi(250+10 \ln 10-0.025-0) \end{aligned}$$=858$	B1	$\left[\frac{5}{2} e^{2 x / 5}+2 x-\frac{5}{2} e^{-2 x / 5}\right]$ allow if no π and/or no limits or incorrect limits
			M1	substituting both limits (their OA and 0) in an expression of correct form ie $a e^{2 x / 5}+b e^{-2 x / 5}+c x, \quad a, b, c \neq 0$ and subtracting in correct order (- 0 is sufficient for lower limit) Condone absence of π for M1
			A1	accept 273π and answers rounding to 273π or 858
		$=858$	[5]	NB The integral can be evaluated using a change of variable to u. This involves changing $\mathrm{d} x$ to $(\mathrm{d} x / \mathrm{d} u) \mathrm{x} d u$. For completely correct work from this method award full marks. Partially correct solutions must include the change in $\mathrm{d} x$. If in doubt consult your TL.
				Remember to indicate second box has been seen even if it has not been used.

$\begin{aligned} & \text { 4(i) } \quad \text { When } x=0.5, y=1.1180 \\ & \Rightarrow \quad A \approx 0.25 / 2\{1+1.4142+2(1.0308+1.1180+1.25)\} \\ & =0.25 \times 4.6059=1.151475 \\ & =1.151(3 \text { d.p. })^{*} \end{aligned}$	B1 M1 E1 [3]	4dp (0.125×9.2118) need evidence
(ii) Explain that the area is an over-estimate. or The curve is below the trapezia, so the area is an over- estimate. This becomes less with more strips. or Greater number of strips improves accuracy so becomes less	B1 B1 [2]	or use a diagram to show why
$\text { (iii) } \begin{aligned} V & =\int_{0}^{1} \pi y^{2} d x \\ & =\int_{0}^{1} \pi\left(1+x^{2}\right) d x \\ & =\pi\left[\left(x+x^{3} / 3\right)\right]_{0}^{1} \\ & =1 \frac{1}{3} \pi \end{aligned}$	M1 B1 A1 [3]	allow limits later $x+x^{3} / 3$ exact

Question			Answer	Marks	Guidance
5	(a)		$\begin{aligned} & V=\int_{0}^{2} \pi y^{2} \mathrm{~d} x=\int_{0}^{2} \pi\left(1+\mathrm{e}^{2 x}\right) \mathrm{d} x \\ & =\pi\left[x+\frac{1}{2} \mathrm{e}^{2 x}\right]_{0}^{2} \\ & =\pi\left(2+1 / 2 \mathrm{e}^{4}-1 / 2\right) \\ & =1 / 2 \pi\left(3+\mathrm{e}^{4}\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { DM1 } \\ & \\ & \text { A1 } \\ & {[4]} \\ & \hline \end{aligned}$	$\int_{0}^{2} \pi\left(1+\mathrm{e}^{2 x}\right) \mathrm{d} x$ limits must appear but may be later condone omission of $d x$ if intention clear $\left[x+\frac{1}{2} \mathrm{e}^{2 x}\right]$ independent of π and limits dependent on first M1.Need both limits substituted in their integral of the form $a x+b e^{2 x}$, where a, b non-zero constants. Accept answers including e^{0} for M1. Condone absence of π for M1 at this stage cao exact only
5	(b)	(i)	$\begin{aligned} x & =0, y=1.4142 ; x=2, y=7.4564 \\ A & =0.5 / 2\{(1.4142+7.4564) \\ & =6.926 \quad+2(1.9283+2.8 \end{aligned}$	B1 M1 A1 [3]	$1.414,7.456$ or better correct formula seen (can be implied by correct intermediate step eg 27.7038../4) 6.926 or 6.93 (do not allow more dp)
5	(b)	(ii)	8 strips: 6.823, 16 strips: 6.797 Trapezium rule overestimates this area, but the overestimate gets less as the no of strips increases.	B1 [1]	oe

$\text { 6(i) } \begin{aligned} & \frac{d y}{}=2 \varphi \operatorname{sos} 2 \theta-2 \sin \quad \theta, \frac{d x}{d \theta}=2 \cos \theta \\ & \frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 \cos 2 \theta-2 \sin \theta}{2 \cos \theta}=\frac{\cos 2 \theta-\sin \theta}{\cos \theta} \end{aligned}$	B1, B1 M1 A1 [4]	substituting for theirs oe
$\begin{aligned} & \text { (ii) When } \theta=\pi / 6, \frac{d y}{d x}=\frac{\cos \pi / 3-\sin \pi / 6}{\cos \pi / 6} \\ & =\frac{1 / 2-1 / 2}{\sqrt{3} / 2}=0 \\ & \text { Coords of B: } x=2+2 \sin (\pi / 6)=3 \\ & y=2 \cos (\pi / 6)+\sin (\pi / 3)=3 \sqrt{ } 3 / 2 \\ & \mathrm{BC}=2 \times 3 \sqrt{ } 3 / 2=3 \sqrt{ } 3 \end{aligned}$	E1 M1 A1,A1 B1ft [5]	for either exact
(iii) (A) $\begin{aligned} y & =2 \cos \theta+\sin 2 \theta \\ & =2 \cos \theta+2 \sin \theta \cos \theta \\ & =2 \cos \theta(1+\sin \theta) \\ & =x \cos \theta^{*} \end{aligned}$ $\begin{aligned} \text { (B) si } & \theta=1 / 2(x-2) \\ \cos ^{2} \theta & =1-\sin ^{2} \theta \\ & =1-1 / 4(x-2)^{2} \\ & =1-1 / 4 x^{2}+x-1 \\ & =\left(x-1 / 4 x^{2}\right)^{*} \end{aligned}$ (C) $\text { artesian equation is } \begin{aligned} y^{2} & =x^{2} \cos ^{2} \theta \\ & =x^{2}\left(x-1 / 4 x^{2}\right) \\ & =x^{3}-1 / 4 x^{4} * \end{aligned}$	M1 E1 B1 M1 E1 M1 E1 [7]	$\sin 2 \theta=2 \sin \theta \cos \theta$ squaring and substituting for x
$\text { (iv) } \begin{aligned} V & =\int_{0}^{4} \pi y^{2} d x \\ & =\pi \int_{0}^{4}\left(x^{3}-\frac{1}{4} x^{4}\right) d x \\ & =\pi\left[\frac{1}{4} x^{4}-\frac{1}{20} x^{5}\right]_{0}^{4} \\ & =\pi(64-51.2) \\ & =12.8 \pi=40.2\left(\mathrm{~m}^{3}\right) \end{aligned}$	M1 B1 A1 [3]	need limits $\left[\frac{1}{4} x^{4}-\frac{1}{20} x^{5}\right]$ 12.8π or 40 or better.

